C)n 14 (Octob	er 2012, a skydiver set a world record for	the nignest	tree fall from an aircraft.			
		er falling from the aircraft, he reached a maximum steady velocity of 373 m / s after 632 onds.						
	(a)	Drav	wa ring around the correct answer to com	plete the se	ntence.			
				frictional				
		This maximum steady velocity is called the initial velocity.						
				terminal	,			
					I	(1)		
						(-)		
	(b)		skydiver wore a chest pack containing mo weight of the chest pack was 54 N.	onitoring and	d tracking equipment.			
		The	gravitational field strength is 10 N / kg.					
		Calc	ulate the mass of the chest pack.					
			Mass of chest pack =		kg	(2)		
						()		
	(-)	D						
	(c)		ng his fall, the skydiver's acceleration was					
			ediately after leaving the aircraft, the skyd					
		(i)	Without any calculation, estimate his acc the aircraft.	celeration a t	rew seconds after leaving			
			Explain your value of acceleration in terr	ns of forces.				
			Estimate					
			Explanation					

		(3)
(ii)	Without any calculation, estimate his acceleration 632 seconds after leaving the aircraft.	
	Explain your value of acceleration in terms of forces.	
	Estimate	
	Explanation	
		(3)
	(Total 9)	٠,

Q2. (a) The diagram shows a lampshade hanging from the ceiling. Draw an **X** on the diagram so that the centre of the **X** marks the centre of the mass of the lampshade.

(1)

(a) Complete the sentence using the correct word or phrase from the box.

above below to the left of to the right of
--

A suspended object will come to rest with its centre of mass directly

..... the point of suspension.

(1)

(c) The diagrams show equipment that a student uses to find the centre of mass of a thin sheet of card.

Arrange these sentences in the correct order to describe how the student can find the centre of mass of the card.

The sequence starts with sentence **D** and finishes with sentence **E**.

- A line is drawn on the card marking the position of the string.
- **B** The pin is put through one of the holes in the card and held in the boss.
- **C** This is repeated using the other hole.
- **D** Two holes are made in the card with each hole near to the edge of the card.
- **E** The centre of mass is where the lines cross on the card.
- **F** The weight is tied to the string and then the string is hung from the pin.

D			E
---	--	--	---

(3) (Total 5 marks) **Q3.** The diagram shows the forces on a small, radio-controlled, flying toy.

(a) (i) The mass of the toy is 0.06 kg.

Gravitational field strength = 10 N/kg

Calculate the weight of the toy.

Show clearly how you work out your answer and give the unit.

.....

Weight =

(ii) Complete the following sentence by drawing a ring around the correct line in the box.

When the toy is hovering stationary in mid-air, the lift force is

(1)

(3)

(b) When the motor inside the toy is switched off, the toy starts to *accelerate* downwards.

(i)	What does the word accelerate mean?	
		(1)
(ii)	What is the direction of the resultant force on the falling toy?	
		(1)
		(Total 6 marks)

The child then pushes the brick to make it tilt.	
How far must the brick be tilted to make it fall over?	
Explain your answer.	
(You may draw a labelled diagram if you wish.)	
	Total 2 marks)

A child stands a wooden brick on its end as shown in the diagram.

Q4.

Q5. (a) The diagram shows a rectangle made out of a sheet of cardboard. Axis of symmetry

Draw an ${\bf X}$ on the diagram so that the centre of the ${\bf X}$ is at the centre of mass of the rectangle.

(1)

(b) The drawing shows a car tyre.

(i)	Where is the centre of mass of the tyre?	
		(1)

(ii)	Explain your answer to (b)(i).	
		(1)
		(Total 3 marks)

Q6. Two children visit a playground.

(a) The diagram shows them on a see-saw. The see-saw is balanced.

Complete the following sentences by drawing a ring around the correct word or line in the box.

(i) The turning effect of the girl's weight is called her

force.

oad.

moment.

(1)

(ii) Point **P** is the axis of

balance

rotation of the see-saw.

turning

(1)

(iii) To make end **A** of the see-saw go up,

the boy moves nearer to point **P**.

the girl moves nearer to point **P**.

the girl moves nearer to end A.

(1)

- (b) In another part of the playground, a tyre has been suspended from a bar.
 - (i) Draw an **X** on the diagram so that the centre of the **X** marks the centre of

mass of the tyre.

(1)

(ii) Complete the sentence by using the correct word or phrase from the box.

above	below	to the left of	to the right of
			•

If the suspended tyre is pushed, it will come to rest with its centre of mass directly the point of suspension.

(Total 5 marks)

- **Q7.** The drawing shows a plastic toy which can stand on its feet.
 - (a) (i) Draw an **X** on the diagram so that the centre of the **X** marks the likely position of the centre of mass of the toy.

Photograph supplied by Hemera/Thinkstock

(1)

(ii) Explain the reason for your choice in part (a)(i).

(b) Suggest **two** ways in which the design of the toy could be altered to make the toy more stable.

	l	 	 	 	 	
	2					
_	٠	 	 	 	 	
•		 	 	 	 	

(Total 4 marks)

Q8.The diagram shows the passenger train on part of a rollercoaster ride.

(a) Which arrow shows the direction of the resultant force acting on the passenger train?

Put a tick (✓) in the box next to your choice.

(1)

(b) For part of the ride, the maximum gravitational field strength acting on the passengers seems 3 times bigger than normal.

Normal gravitational field strength = 10 N/kg

Calculate the maximum gravitational field strength that seems to act on the passengers during the ride.	
Maximum gravitational field strength = N/kg	(1)
	passengers during the ride.

(ii) One of the passengers has a mass of 75 kg.

Calculate the maximum weight this passenger seems to have during the ride
Show clearly how you work out your answer.

Maximum weight = N

(Total 4 marks)

Q9.A student carries out an investigation using a metre rule as a pendulum.

(a) **Diagram 1** shows a metre rule.

(ii)

Diagram 1

(i) Draw, on **Diagram 1**, an **X** to show the position of the centre of mass of the rule.

(1)

oute man emeant by the control of mace of all object.

(1)

(b) The student taped a 100 g mass to a metre rule.

She set up the apparatus as shown in **Diagram 2**.

She suspended the metre rule from a nail through a hole close to one end, so she could use the metre rule as a pendulum.

The distance d is the distance between the nail and the 100 g mass.

State what is meant by the 'centre of mass of an object'

Diagram 2

(i) Draw, on **Diagram 2**, a **Y** to show a possible position of the centre of mass of the pendulum.

(1)

(ii) The student carried out an investigation to find out how the time period of the pendulum varies with *d*.

Some of her results are shown in the table.

	Time				
d in cm	First test	Second test	Third test	Mean value	Mean time for 1 swing in seconds
10.0	15.3	15.4	15.5	15.4	1.54
30.0	14.7	14.6	14.7	14.7	1.47
50.0	15.3	15.6	15.4	15.4	1.54
70.0	16.5	16.6	16.5		

Complete the table.

You may use the space below to show your working.

	is question you will be assessed on using good English, organising mation clearly and using specialist terms where appropriate.
	cribe how the student would carry out the investigation to get the resable in part (ii).
You	should include:
•	any other apparatus required
•	how she should use the apparatus
•	how she could make it a fair test
•	a risk assessment
•	how she could make her results as accurate as possible.

(3)

(6)

(2)

(c) A graph of the student's results is shown below.

(I)) I	Jescri	be the	e pattern	shown	by	the	grap	h.
---	----	-----	--------	--------	-----------	-------	----	-----	------	----

.....

.....

(ii) The student thinks that the measurements of time for d = 10 cm might be anomalous, so she takes a fourth measurement.

Her four measurements are shown below.

15.3 s 15.4 s 15.5 s 15.3 s

State whether you consider any of these measurements to be anomalous.
Justify your answer.
(2)
(Total 16 marks)